
AFRL-AFOSR-VA-TR-2015-0355

YIP Bell Inequalities for Complex Networks

Greg Ver Steeg
UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES

Final Report
10/26/2015

DISTRIBUTION A: Distribution approved for public release.

AF Office Of Scientific Research (AFOSR)/ RTC
Arlington, Virginia 22203

Air Force Research Laboratory

Air Force Materiel Command

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENT

14. ABSTRACT

15. SUBJECT TERMS

18. NUMBER
 OF
 PAGES

19a. NAME OF RESPONSIBLE PERSON
 a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
 ABSTRACT

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Adobe Professional 7.0

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

16. SECURITY CLASSIFICATION OF:

19b. TELEPHONE NUMBER (Include area code)

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

INSTRUCTIONS FOR COMPLETING SF 298

Standard Form 298 Back (Rev. 8/98)

1. REPORT DATE. Full publication date, including
day, month, if available. Must cite at least the year and
be Year 2000 compliant, e.g. 30-06-1998; xx-06-1998;
xx-xx-1998.

2. REPORT TYPE. State the type of report, such as
final, technical, interim, memorandum, master's thesis,
progress, quarterly, research, special, group study, etc.

3. DATES COVERED. Indicate the time during which
the work was performed and the report was written,
e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov
1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume number
and part number, if applicable. On classified
documents, enter the title classification in parentheses.

5a. CONTRACT NUMBER. Enter all contract numbers
as they appear in the report, e.g. F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as
they appear in the report, e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all
program element numbers as they appear in the report,
e.g. 61101A.

5d. PROJECT NUMBER. Enter all project numbers as
they appear in the report, e.g. 1F665702D1257; ILIR.

5e. TASK NUMBER. Enter all task numbers as they
appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit
numbers as they appear in the report, e.g. 001;
AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s)
responsible for writing the report, performing the
research, or credited with the content of the report. The
form of entry is the last name, first name, middle initial,
and additional qualifiers separated by commas, e.g.
Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND
ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER.
Enter all unique alphanumeric report numbers assigned by
the performing organization, e.g. BRL-1234;
AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S)
AND ADDRESS(ES). Enter the name and address of the
organization(s) financially responsible for and monitoring
the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if
available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S).
Enter report number as assigned by the sponsoring/
monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use
agency-mandated availability statements to indicate the
public availability or distribution limitations of the report. If
additional limitations/ restrictions or special markings are
indicated, follow agency authorization procedures, e.g.
RD/FRD, PROPIN, ITAR, etc. Include copyright
information.

13. SUPPLEMENTARY NOTES. Enter information not
included elsewhere such as: prepared in cooperation
with; translation of; report supersedes; old edition number,
etc.

14. ABSTRACT. A brief (approximately 200 words)
factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases identifying
major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security
classification in accordance with security classification
regulations, e.g. U, C, S, etc. If this form contains
classified information, stamp classification level on the top
and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be
completed to assign a distribution limitation to the abstract.
 Enter UU (Unclassified Unlimited) or SAR (Same as
Report). An entry in this block is necessary if the abstract
is to be limited.

Final performance report

PI: Greg Ver Steeg

Young Investigator Award
Grant Title: Bell Inequalities for Complex Networks

Grant #: FA9550-12-1-0417
Reporting Period: 1 August 2012 to 31 July 2015

Information Sciences Institute
University of Southern California,

4676 Admiralty Way
Marina del Rey, CA 90292

October 20, 2015

Final Report for “Bell Inequalities for Complex Networks”

Greg Ver Steeg

Abstract

This effort studied new methods to understand the effect of hidden variables af-
fecting complex systems. Bell inequalities are a famous example of a hidden variable
test in quantum physics that provides the strongest evidence for that theory. Initial
work in this project extended the mathematical formulations of Bell inequalities to
design new hidden variable tests that were able to account for confounding effects in
complex systems including human social networks. These tests solved an open ques-
tion about the identifiability of contagion in social network studies. Subsequent work
moved beyond identification of hidden variables to develop a new information-theoretic
framework capable of reconstructing hidden variables explaining the multivariate de-
pendencies in complex systems. These methods have demonstrated value on diverse
problems including human behavior, language, neuroscience, and gene expression.

1 Objectives

The original objectives of this project were the following:

• Objective 1: Develop statistical tests that identify which hidden processes give rise
to network dynamics.

• Objective 2: Analyze key models of dynamic processes in networks, e.g., to distinguish
whether influence or other hidden factors are responsible for correlations.

• Objective 3: Perform meta-analysis of studies that purport to identify influence in
social networks. E.g., the highly publicized result that obesity is contagious in [1]
has been criticized [2] and this method could be used to settle the controversy.

• Objective 4: Improve connection between probabilistic graphical models and alge-
braic geometry leading to more scalable methods.

These objectives were fulfilled in the work [3]. This led to a broadening of the scope of the
project to include not just the identification of hidden variables, but also reconstruction.
The following objectives became the central focus of the second phase of work.

• Objective 5: Deduce structural relationships resulting from common dependence on
hidden variables and reconstruct these hidden variables.

1

• Objective 6: Generalize to arbitrary complex systems and provide theoretical guar-
antees to recover hidden variables.

2 Status of effort

This work successfully translated the implications of [4] to leverage ideas from algebraic
geometry to construct tests for hidden variables (“Bell inequalities”) that were applicable in
complex settings like human social networks. The work of Christakis and Fowler suggesting
that obesity could be contagious in social networks [1] inspired many papers copying their
methodology to support other dubious claims along with many statistical papers criticizing
the methodology. This controversy was summarized in [2], leaving an open question as to
whether contagion could actually be identified in social networks. Our work [3] settled
this open question by providing a constructive test that applied to the study of Christakis
and Fowler. We applied this test to the Christakis and Fowler’s original obesity study and
found that, indeed, various non-contagion confounding effects suggested by [2] and others
could be ruled out as the cause of strong correlations in obesity in social networks.

The second phase of this effort led to the development of information-theoretic methods
to reconstruct underlying hidden factors responsible for multivariate dependence in data.
This line of work [5, 6] has already been successfully applied in several domains including
neuroscience [7, 8], analyzing text [9, 10], and gene expression.

3 Accomplishments / New findings

3.1 Identifying hidden variables

Christakis and Fowler’s paper suggesting that obesity may spread along social ties [1] has
sparked years of discussion about what constitutes evidence of contagion in observational
social network studies (see, e.g., this recent review [?]). The most general result from
the causal modeling perspective shows that latent homophily acts as a confounder for
contagion so that uniquely pinpointing the strength of contagion is impossible without
additional assumptions [2]. In other words, contagion is non-parametrically unidentifiable.
However, if the true goal is to test for the presence of contagion, a lower bound on the
strength of contagion is all that is necessary. Our work presented exactly such bounds,
derived analogously to Bell inequalities but requiring more sophisticated mathematical
methods from algebraic geometry.

Previous tests for contagion in social network studies were vulnerable to the confounding
effects of latent homophily (i.e., ties form preferentially between individuals with similar
hidden traits). We demonstrated a general method to lower bound the strength of causal
effects in observational social network studies, even in the presence of arbitrary, unobserved
individual traits. Our tests require no parametric assumptions and each test is associated

2

with an algebraic proof. We demonstrated the effectiveness of our approach by correctly
deducing the causal effects for examples previously shown to expose defects in existing
methodology. Finally, we applied our methods to the Framingham Heart Study showing
that various non-contagion confounding effects suggested by [2] and others could be ruled
out as the cause of strong correlations in obesity in social networks [3].

Our method is based on an algebraic geometric approach to deducing the most general
possible bounds compatible (or incompatible) with a given hidden variable model. It
produces a sequence of bounds on the strength of contagion which converge in some limit
to the best possible bounds. In this sense, our method is the best solution to the problem of
measuring the strength of contagion that does not involve invoking additional (parametric)
assumptions.

We also re-formulated the search for statistical tests as a linear program [3] instead of
an SDP[4], leading to the discovery of more powerful tests with less computation. This
re-formulation also allows for more flexibility in specifying the null (hidden variable) model.
We applied the new tests to FHS data to deduce, for example, that correlations in obesity
cannot be explained solely in terms of hidden variable models (without contagion), and
correlations in smoking exhibit a non-stationary behavior suggesting common external
cause as a necessary factor.

3.2 Recovering hidden variables

Without any prior knowledge, what can be automatically learned from high-dimensional
data? If the variables are uncorrelated then the system is not really high-dimensional
but should be viewed as a collection of unrelated univariate systems. If correlations exist,
however, then some common cause or causes must be responsible for generating them.
Without assuming any particular model for these hidden common causes, is it still possible
to reconstruct them? We propose an information-theoretic principle, which we refer to
as “correlation explanation”, that codifies this problem in a model-free, mathematically
principled way. Essentially, we are searching for latent factors so that, conditioned on these
factors, the correlations in the data are minimized (as measured by multivariate mutual
information). In other words, we look for the simplest explanation that accounts for the
most correlations in the data. As a bonus, building on this information-based foundation
leads naturally to an innovative paradigm for learning hierarchical representations that is
more tractable than Bayesian structure learning and provides richer insights than neural
network inspired approaches [?].

In initial work [5], we introduced a method to learn a hierarchy of successively more
abstract representations of complex data based on optimizing an information-theoretic
objective. Intuitively, the optimization searches for a set of latent factors that best ex-
plain the correlations in the data as measured by multivariate mutual information. The
method is unsupervised, requires no model assumptions, and scales linearly with the num-
ber of variables which makes it an attractive approach for very high dimensional systems.

3

We demonstrated that Correlation Explanation (CorEx) automatically discovers meaning-
ful structure for data from diverse sources including personality tests, DNA, and human
language. In benchmarks, we showed that CorEx could recover synthetic latent tree mod-
els perfectly for problems orders of magnitude larger than standard techniques. Because
CorEx scales linearly, it also outperforms methods specially designed for latent tree prob-
lems which scale cubically or worse.

In subsequent work [6], we deepened these results by proving rigorous bounds on the
quality of the recovered latent factors. In particular, we consider a collection of random
variables that each depend only on a set of input variables as a representation of the
inputs. We presented bounds on how informative a representation is about some input
data and extended these bounds to hierarchical representations so that we can quantify
the contribution of each layer towards capturing the information in the original data. These
results indicated a bottom-up procedure which casts the search for maximally informative
hierarchical representations as an optimization problem. The complexity of the resulting
optimization is linear in the number of variables. Compared to the results in [5], these
results allow several generalizations. First of all, we no longer had to restrict ourselves to
latent tree models; arbitrary connectivity between observed variables and learned latent
factors is possible. Secondly, we showed in this work how to extend the results from discrete
data to continuous data.

One of the drawbacks of the standard deep learning paradigms that is shared by CorEx
is the need to specify the number of layers and hidden units in each layer ahead of time.
Ideally, we could organically grow a network of hidden units, adding new ones as long
as they provided an information advantage and then stopping. In [11], we introduced an
approach that does this that we called the information sieve. The sieve is based on a novel
hierarchical decomposition of information. Intuitively, data is passed through a series of
progressively fine-grained sieves. Each layer of the sieve recovers a single latent factor that is
maximally informative about multivariate dependence in the data. The data is transformed
after each pass so that the remaining unexplained information trickles down to the next
layer. Ultimately, we are left with a set of latent factors explaining all the dependence in the
original data and remainder information consisting of independent noise. We presented a
practical implementation of this framework for discrete variables. We showed that it could
be used for a variety of tasks including (discrete) independent component analysis, lossy
and lossless compression, and predicting missing values in data. For discrete independent
component analysis, in particular, the sieve appears as a state-of-the-art approach. The
best previous approach was exponential in the number of variables [?] while the sieve is
linear. Although the previous approach provides better theoretical guarantees, the sieve
will be more useful in many practical, high-dimensional situations.

4

4 Personnel supported

This young investigator award was solely used to support a portion of the effort for the PI,
Greg Ver Steeg (Research Faculty).

5 Publications

The following publications were supported by this effort:

• Greg Ver Steeg and Aram Galstyan. Statistical tests for contagion in observational
social network studies. In Proceedings of the Sixteenth International Conference on
Artificial Intelligence and Statistics (AISTATS), 2013.

• Greg Ver Steeg and Aram Galstyan. Discovering structure in high-dimensional data
through correlation explanation. In Advances in Neural Information Processing Sys-
tems (NIPS), 2014.

• Greg Ver Steeg and Aram Galstyan. Maximally informative hierarchical representa-
tions of high-dimensional data. In Proceedings of the Sixteenth International Con-
ference on Artificial Intelligence and Statistics (AISTATS), 2015.

• Greg Ver Steeg and Aram Galstyan. The Information Sieve. arXiv:1507.02284, 2015.

Code that resulted from these publications is included in appendices.

6 Interactions/Transitions

I participated in the AFOSR Complex Networks program reviews and I also visited AFRL
Rome for a few days to discuss collaborative efforts and gave a talk for the “Distinguished
Speaker Seminar Series in Machine Intelligence and Autonomy” in 2014. Besides these
Air Force affiliated interactions, I disseminated results of this effort in standard academic
venues including presentations at AISTATS in 2013 and 2015 and NIPS in 2014. Other
presentations and invited talks include the following.

• Joint Symposium on Neural Computation at USC 2015

• Machine Learning LA at eHarmony 2015

• Information Theory and Applications Workshop 2015

• Santa Fe Institute, workshop on “Statistical Mechanics of Complexity” 2014

• IPAM Mathematics of Social Learning Workshop 2014

• ISI, Natural Language Seminar 2013

• ID Analytics, “Information-Theoretic Tools for Social Media” 2013

• Santa Fe Institute, workshop on “Structure, Statistical Inference and Dynamics in
Networks” 2013

5

• Sante Fe Institute, “Information-Theoretic Tools for Social Media” 2012

• Keynote for “Making Sense of Microposts” workshop at WWW 2012. 2012

• SAP Research, Singapore 2012

• LARC, Singapore Management University seminar. 2012

• UC Irvine, AI-ML seminar. 2012

• Society of Biological Psychiatry, 2015.

• NIPS workshop on Machine Learning in Computational Biology (MLCB), 2014.

• NIPS workshop on Machine Learning and Interpretation in Neuroimaging (MLINI),
2014. Workshop on Information in Networks, 2013. AAAI-13 Workshop on Expand-
ing the Boundaries of Health Informatics Using AI (HIAI), 2013.

• Workshop on Information in Networks(WIN), 2012.

7 Inventions and patent disclosures

None.

8 Honors/Awards

None.

References

[1] Nicholas A. Christakis and James H. Fowler. The spread of obesity in a large social
network over 32 years. The New England Journal of Medicine, 357(4):370–379, July
2007.

[2] Cosma R. Shalizi and Andrew C. Thomas. Homophily and contagion are generically
confounded in observational social network studies. arxiv:1004.4704, 2010.

[3] Greg Ver Steeg and Aram Galstyan. Statistical tests for contagion in observational
social network studies. In Proceedings of the Sixteenth International Conference on
Artificial Intelligence and Statistics (AISTATS), 2013.

[4] Greg Ver Steeg and Aram Galstyan. A sequence of relaxations constraining hidden
variable models. In Proc. of the Twenty-Seventh Conference on Uncertainty in Arti-
ficial Intelligence (UAI 2011), 2011.

[5] Greg Ver Steeg and Aram Galstyan. Discovering structure in high-dimensional data
through correlation explanation. In Advances in Neural Information Processing Sys-
tems (NIPS), 2014.

6

[6] Greg Ver Steeg and Aram Galstyan. Maximally informative hierarchical representa-
tions of high-dimensional data. In Proceedings of the Sixteenth International Confer-
ence on Artificial Intelligence and Statistics (AISTATS), 2015. http://arxiv.org/

abs/1410.7404.

[7] Sarah K. Madsen, Greg Ver Steeg, Adam Mezher, Neda Jahanshad, Talia M. Nir,
Xue Hua, Boris A. Gutman, Aram Galstyan, and Paul M. Thompson. Information-
theoretic characterization of blood panel predictors for brain atrophy and cognitive
decline in the elderly. IEEE International Symposium on Biomedical Imaging, 2015.

[8] Madelaine Daianu, Greg Ver Steeg, Adam Mezher, Neda Jahanshad, Talia M. Nir, Xi-
aoran Yan, Gautam Prasad, Kristina Lerman, Aram Galstyan, and Paul M. Thomp-
son. Information-theoretic clustering of neuroimaging metrics related to cognitive
decline in the elderly. In Proceedings of the MICCAI Workshop on Medical Computer
Vision, 2015.

[9] Nathan Hodas, Greg Ver Steeg, Joshua Harrison, Satish Chikkagoudar, Eric Bell, and
Courtney Corley. Disentangling the lexicons of disaster response in twitter. In The 3rd
International Workshop on Social Web for Disaster Management (SWDM’15), 2015.

[10] Peixian Chen, Nevin L Zhang, Leonard KM Poon, and Zhourong Chen. Progres-
sive em for latent tree models and hierarchical topic detection. arXiv preprint
arXiv:1508.00973, 2015.

[11] Greg Ver Steeg and Aram Galstyan. The information sieve. arXiv preprint
arXiv:1507.02284, 2015.

A Contagion code

This code resulted from [3].

7

Statistical tests for contagion in
observational social network studies
Greg Ver Steeg and Aram Galstyan
Information Sciences Institute, USC

This notebook contains code and examples for the paper of the associated title.

Constructing tests

Definitions
These definitions are used in the rest of the notebook. Note that we always use lexical order for definin-
ing binary sequences. A,B=((0,0,0),(0,0,0)),((0,0,0),(0,0,1))...

vec[j_,T_]:=IntegerDigits[j,2,T];
vecboth[j_,T_]:={vec[Quotient[j,2T],T],vec[Mod[j,2T],T]};
(*⋆Number of transitions of each type*⋆)
f00[a_]:=Sum[(1-−a[[i]])(1-−a[[i+1]]),{i,Length[a]-−1}];
f01[a_]:=Sum[(1-−a[[i]])(a[[i+1]]),{i,Length[a]-−1}];
f10[a_]:=Sum[(a[[i]])(1-−a[[i+1]]),{i,Length[a]-−1}];
f11[a_]:=Sum[(a[[i]])(a[[i+1]]),{i,Length[a]-−1}];
(*⋆For a non-−causal model*⋆)
pseq[a_,pfp_,pfm_,p0_]:= pfp^f01[a] pfm^f10[a] 1-−pfp^f00[a] 1-−pfm^f11[a] p0^a[[
(*⋆For a causal model*⋆)
pseqc[a_,b_,pfp_,pfm_,p0_,b0_,b00_,b01_,b10_,b11_]:= pseq[a,pfp,pfm,p0] b0^b[[1]] (1-−b0)^(
Which[
a[[i]]⩵0 && b[[i]]⩵0 && b[[i+1]]⩵1,b00,
a[[i]]⩵0 && b[[i]]⩵0 && b[[i+1]]⩵0,1-−b00,
a[[i]]⩵0 && b[[i]]⩵1 && b[[i+1]]⩵1,b01,
a[[i]]⩵0 && b[[i]]⩵1 && b[[i+1]]⩵0,1-−b01,
a[[i]]⩵1 && b[[i]]⩵0 && b[[i+1]]⩵1,b10,
a[[i]]⩵1 && b[[i]]⩵0 && b[[i+1]]⩵0,1-−b10,
a[[i]]⩵1 && b[[i]]⩵1 && b[[i+1]]⩵1,b11,
a[[i]]⩵1 && b[[i]]⩵1 && b[[i+1]]⩵0,1-−b11
],
{i,Length[b]-−1}];
(*⋆For an "instant" causal model*⋆)
pseqi[a_,b_,pfp_,pfm_,p0_,bp0_,bp1_,b00_,b01_,b10_,b11_]:= pseq[a,pfp,pfm,p0] Which[
a[[1]]⩵0,bp0^b[[1]] (1-−bp0)^(1-−b[[1]]),
a[[1]]⩵1,bp1^b[[1]] (1-−bp1)^(1-−b[[1]])
] Product[
Which[
a[[i+1]]⩵0 && b[[i]]⩵0 && b[[i+1]]⩵1,b00,
a[[i+1]]⩵0 && b[[i]]⩵0 && b[[i+1]]⩵0,1-−b00,
a[[i+1]]⩵0 && b[[i]]⩵1 && b[[i+1]]⩵1,b01,
a[[i+1]]⩵0 && b[[i]]⩵1 && b[[i+1]]⩵0,1-−b01,
a[[i+1]]⩵1 && b[[i]]⩵0 && b[[i+1]]⩵1,b10,
a[[i+1]]⩵1 && b[[i]]⩵0 && b[[i+1]]⩵0,1-−b10,

,b11,

a[[i+1]]⩵1 && b[[i]]⩵1 && b[[i+1]]⩵1,b11,
a[[i+1]]⩵1 && b[[i]]⩵1 && b[[i+1]]⩵0,1-−b11
],
{i,Length[b]-−1}];

(*⋆Influence model 1, "Instant" influence*⋆)
phat1[δ_,T_]:= Flatten[Table[2-−TProduct[δ Boole[vec[i,T][[t]]⩵vec[j,T][[t]]]+(1-−δ)/∕2,{t,1,
(*⋆Influence model 2, Delayed influence*⋆)
phat2[δ_,T_]:= Flatten[Table[2-−T-−1Product[δ Boole[vec[i,T][[t-−1]]⩵vec[j,T][[t]]]+(1-−δ)/∕2,{t

(*⋆Given M samples and <c>_obs, the confidence that <c>_real ≥ z = <c>_obs-−γ, ASSUMING c is
hoeffding[M_,z_]:=1-−Exp-−2 M (z/∕2)2;
norm[z_]:=z/∕Total[z];

id[j_,NN_]:=Table[Boole[i⩵j],{i,NN}];
(*⋆Convert counts to actual random vectors of which we have M samples*⋆)
rawdata[vector_,counts_]:=Flatten[
Table[
Table[vector.id[j,Length[counts]],{k,counts[[j]]}],
{j,Length[counts]}],
1];
(*⋆Confidence based on Binomial distribution. Return confidence level rather than p-−value*⋆)
testbinomial[vector_,counts_,greater_]:=1-−N[CDF[BinomialDistribution[Abs[vector].counts,1/∕

FHS data

(*⋆Counts of sequences for NR friends, also listed in paper*⋆)
obesity = {5, 2, 2, 0, 4, 3, 2, 2, 1, 3, 3, 3, 3, 1, 2, 4, 4, 1, 6, 1, 3, 4, 5, 3, 2, 0, 8, 0,

1, 4, 2, 1, 4, 7, 2, 2, 5, 3, 8, 2, 4, 2, 3, 4, 2, 3, 2, 1, 1, 1, 3, 1, 2, 2, 1, 3, 1,
5, 2, 6, 3, 6, 3, 3, 6, 2, 4, 3, 7, 9, 6, 6, 1, 0, 5, 4, 4, 4, 3, 1, 2, 3, 2, 1, 5, 4,
3, 5, 2, 7, 4, 1, 2, 3, 0, 1, 1, 2, 3, 6, 4, 5, 5, 4, 1, 7, 3, 1, 0, 6, 0, 0, 0, 0, 5,
2, 3, 2, 4, 2, 6, 1, 1, 1, 3, 2, 1, 3, 3, 3, 2, 3, 3, 2, 1, 2, 0, 2, 3, 6, 2, 5, 1, 0,
3, 1, 1, 3, 0, 7, 6, 1, 2, 0, 2, 2, 1, 6, 4, 0, 3, 8, 8, 5, 6, 3, 3, 6, 2, 7, 5, 3,
5, 3, 5, 2, 3, 2, 4, 5, 2, 2, 4, 2, 4, 3, 4, 5, 1, 2, 2, 3, 3, 1, 2, 3, 3, 0, 2, 5,
2, 1, 2, 1, 0, 1, 3, 0, 3, 3, 0, 1, 3, 4, 3, 2, 2, 6, 4, 2, 2, 11, 1, 2, 4, 2, 2, 3,
3, 1, 0, 2, 1, 3, 2, 0, 1, 1, 1, 1, 2, 1, 1, 3, 1, 0, 1, 4, 0, 1, 5, 3, 0, 1, 1, 1};

ST Data
Here input data from simulations using Shalizi/Thomas models

2 contagion_code_final.nb

sthomophily = {106 344, 2067, 2304, 1048, 2159, 954, 1038, 1682, 2189, 1073, 1010,
1713, 1059, 1761, 1776, 41 313, 2330, 109, 89, 45, 96, 40, 53, 64, 73, 59, 45,
77, 61, 84, 80, 1890, 2507, 97, 108, 46, 92, 52, 53, 104, 97, 40, 64, 84, 59,
88, 108, 1967, 1194, 48, 48, 36, 52, 32, 25, 44, 40, 29, 23, 58, 29, 38, 46,
1238, 2415, 73, 108, 59, 102, 46, 55, 96, 109, 49, 46, 78, 41, 66, 85, 1918,
1076, 42, 46, 26, 52, 27, 37, 48, 46, 36, 32, 55, 25, 40, 38, 1156, 1083, 59,
43, 47, 48, 17, 29, 42, 68, 38, 23, 56, 28, 41, 44, 1192, 1961, 75, 80, 42, 78,
43, 39, 95, 87, 52, 46, 99, 46, 78, 103, 2405, 2359, 99, 103, 53, 83, 45, 55,
89, 91, 52, 48, 73, 57, 77, 75, 1985, 1207, 52, 42, 24, 32, 25, 34, 46, 56, 31,
32, 50, 21, 49, 49, 1264, 1199, 42, 39, 27, 43, 27, 27, 53, 44, 30, 23, 62, 27,
47, 51, 1175, 1926, 88, 94, 56, 72, 55, 46, 114, 77, 55, 49, 107, 48, 91, 94,
2417, 1256, 48, 52, 30, 51, 25, 29, 42, 46, 28, 20, 48, 26, 36, 51, 1182, 1926,
80, 86, 45, 69, 43, 41, 86, 60, 51, 34, 99, 45, 93, 84, 2419, 1906, 95, 83, 47,
79, 53, 58, 92, 73, 54, 41, 109, 50, 108, 98, 2457, 41 840, 1734, 1777, 1014,
1765, 1028, 996, 2170, 1704, 1125, 1075, 2192, 1095, 2120, 2115, 106 407};

stinfluence = {17 999, 2339, 2289, 1241, 3224, 1127, 1217, 950, 13 987, 2241, 2251,
1115, 3235, 1146, 1266, 1197, 2350, 2009, 489, 1026, 510, 839, 252, 853, 1671,
1811, 466, 1041, 479, 762, 257, 1254, 2262, 477, 1479, 849, 610, 275, 850, 774,
1655, 461, 1431, 872, 564, 262, 828, 1117, 1189, 1054, 896, 2840, 279, 568, 525,
2527, 834, 1040, 867, 2669, 316, 574, 547, 3302, 3243, 488, 587, 269, 2674, 773,
1007, 809, 2604, 508, 576, 293, 2892, 769, 1019, 1180, 1161, 869, 260, 543,
801, 1452, 432, 1550, 792, 813, 253, 557, 830, 1439, 478, 2361, 1146, 248, 854,
559, 1003, 449, 1929, 1633, 860, 242, 867, 518, 1100, 453, 1872, 2392, 992,
887, 767, 2509, 734, 1560, 1536, 10 086, 667, 843, 761, 2546, 832, 1689, 1640,
13 999, 13 947, 1682, 1655, 795, 2551, 723, 903, 688, 9829, 1602, 1525, 759,
2579, 740, 930, 928, 2222, 1862, 489, 1060, 499, 859, 266, 851, 1565, 1766, 488,
982, 529, 817, 267, 1241, 2192, 449, 1530, 823, 538, 236, 809, 761, 1539, 439,
1394, 788, 576, 238, 843, 1130, 1121, 1012, 786, 2671, 276, 537, 538, 2446, 748,
973, 767, 2478, 274, 536, 482, 3150, 3317, 503, 540, 270, 2775, 812, 1077, 803,
2580, 515, 579, 262, 3064, 800, 1136, 1242, 1039, 788, 230, 625, 798, 1498, 454,
1634, 683, 840, 230, 540, 870, 1489, 472, 2375, 1237, 261, 891, 502, 1080, 454,
1985, 1709, 829, 276, 782, 512, 1179, 478, 2075, 2354, 1280, 1231, 1095, 3342,
1173, 2179, 2456, 13 982, 946, 1196, 1186, 3095, 1216, 2325, 2473, 18 561};

The Basic Optimization Problem
Given some distribution, p!, we want to define an optimization problem that returns c (A, B), γ𝛾 so that
〈c(A, B)〉p! -− 〈c(A, B)〉nc ≥ γ𝛾 for all non-causal models,nc, and γ𝛾 is maximized. Eq. 1.7 in the paper.

LP1[phat_, T_: 3, setmaxd_: -− 1, method_: "InteriorPoint"] :=
Module[{a0, b0, ap, am, bp, bm, c, γ, λ},

maxd = If[setmaxd < 0, 2 T, setmaxd];
vars = {a0, b0, ap, am, bp, bm};
(*⋆An arbitrary operator to take exp. value of*⋆)
cs = Flatten[Table[c[{i, j}], {i, 0, 2^T -− 1}, {j, 0, 2^T -− 1}]];
(*⋆The quantity we ensure is non-−negative*⋆)
exp = -−γ + cs.phat -− Sum[c[{i, j}] pseq[vec[i, T], ap, am, a0]

pseq[vec[j, T], bp, bm, b0], {i, 0, 2^T -− 1}, {j, 0, 2^T -− 1}];

(*⋆Monomials in the Handelman representation*⋆)
gs = {a0, b0, 1 -− a0, 1 -− b0, ap, am, bp, bm, 1 -− ap, 1 -− am, 1 -− bp, 1 -− bm};
(*⋆Powers to use in the Handelman representation*⋆)
powers = Flatten[Table[{i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12},

{i1, 0, maxd},
,

contagion_code_final.nb 3

{i2, 0, maxd -− i1},
{i3, 0, maxd -− i1 -− i2},
{i4, 0, maxd -− i1 -− i2 -− i3},
{i5, 0, maxd -− i1 -− i2 -− i3 -− i4},
{i6, 0, maxd -− i1 -− i2 -− i3 -− i4 -− i5},
{i7, 0, maxd -− i1 -− i2 -− i3 -− i4 -− i5 -− i6},
{i8, 0, maxd -− i1 -− i2 -− i3 -− i4 -− i5 -− i6 -− i7},
{i9, 0, maxd -− i1 -− i2 -− i3 -− i4 -− i5 -− i6 -− i7 -− i8},
{i10, 0, maxd -− i1 -− i2 -− i3 -− i4 -− i5 -− i6 -− i7 -− i8 -− i9},
{i11, 0, maxd -− i1 -− i2 -− i3 -− i4 -− i5 -− i6 -− i7 -− i8 -− i9 -− i10},
{i12, 0, maxd -− i1 -− i2 -− i3 -− i4 -− i5 -− i6 -− i7 -− i8 -− i9 -− i10 -− i11}], 11];

powers = Select[powers, Total[#[[1 ;; 4]]] ≤ 2 &];
(*⋆For a0,1-−a0,b0,1-−b0, only squared powers*⋆)
powers = Select[powers, Total[#] ≥ 2 T || Total[#] ≤ 1 &];
(*⋆It seems this doesn't affect bounds*⋆)

lambdas = Map[λ[#] &, powers]; (*⋆coefficients in H. Rep.*⋆)
handelman = FromCoefficientRules[Map[# → λ[#] &, powers], gs];
(*⋆The polynomial*⋆)
equalities = Select[Flatten[CoefficientList[exp -− handelman, vars]],

! MatchQ[#, 0] &];
(*⋆Equate poly monomials*⋆)

infostring = "Number of terms in handelman rep, : " <>
ToString[Length[lambdas]] <> ", for maxd: " <> ToString[maxd] <>
", should be <= : " <> ToString[Binomial[maxd + 12, maxd]] <>
" Total var in LP: " <> ToString[Length[lambdas] + Length[cs] + 1] <>
" Total number of constraints from equating terms of polys: " <>
ToString[Length[equalities]];

temp = PrintTemporary[infostring];

(*⋆Convert representation of
constraints for LinearProgramming call into m.x=b*⋆)

res = CoefficientArrays[equalities, Join[{γ}, lambdas, cs]];
m = res[[2]];
b = Map[{#, 0} &, -−res[[1]]];
maxgamma = Join[{-−1}, Table[0, {i, Length[lambdas] + Length[cs]}]];
(*⋆{Lower,Upper bounds} on variables*⋆)
constraints = Join[Table[{0, Infinity}, {i, Length[lambdas] + 1}],

Table[{-−1, 1}, {i, Length[cs]}]];

(*⋆Use method "RevisedSimplex" for numerically exact (but slower) answers*⋆)
sol = LinearProgramming[maxgamma, m, b, constraints, Method → method];

NotebookDelete[temp];
(*⋆Return γ,c.phat-−γ,c,λ*⋆)
If[Length[sol] ⩵ Length[lambdas] + Length[cs] + 1, {sol[[1]],

sol[[2 + Length[lambdas] ;;]].phat -− sol[[1]], sol[[2 + Length[lambdas] ;;]],
sol[[2 ;; Length[lambdas] + 1]]}, Print["Could not find a bound"];

0]
]

Defining the equalities
Here we define the set of equality constraints that must be satisfied.

4 contagion_code_final.nb

Here we define the set of equality constraints that must be satisfied.

equal[vectorpoly_, vars_] :=
Module[{c, NN = Length[vectorpoly]},

exp = Sum[c[i] vectorpoly[[i]], {i, NN}];
equalities = Select[Flatten[CoefficientList[exp, vars]], ! MatchQ[#, 0] &];
(*⋆Equate poly monomials*⋆)
NullSpace[CoefficientArrays[equalities, Table[c[i], {i, NN}]][[2]]]

]

Print["Equalities satisfied by non-−causal models"]
vars = {a0, b0, ap, am, bp, bm};
T = 4;
matrixeq4 =

equal[Flatten[Table[pseq[vec[i, T], ap, am, a0] pseq[vec[j, T], bp, bm, b0],
{i, 0, 2^T -− 1}, {j, 0, 2^T -− 1}], 1], vars];

Print["For T=", T, " there are ", Dimensions[matrixeq4][[1]],
" linearly independent constraints"]

T = 5;
matrixeq5 =

equal[Flatten[Table[pseq[vec[i, T], ap, am, a0] pseq[vec[j, T], bp, bm, b0],
{i, 0, 2^T -− 1}, {j, 0, 2^T -− 1}], 1], vars];

Print["For T=", T, " there are ", Dimensions[matrixeq5][[1]],
" linearly independent constraints"]

Print["For causal models"]
varsc = {ap, am, a0, b0, b00, b01, b10, b11};
T = 4;
matrixeq4c =

equal[Flatten[Table[pseqc[vec[i, T], vec[j, T], ap, am, a0, b0, b00, b01, b10, b11],
{i, 0, 2^T -− 1}, {j, 0, 2^T -− 1}], 1], varsc];

Print["For T=", T, " there are ", Dimensions[matrixeq4c][[1]],
" linearly independent constraints"]

T = 5;
matrixeq5c =

equal[Flatten[Table[pseqc[vec[i, T], vec[j, T], ap, am, a0, b0, b00, b01, b10, b11],
{i, 0, 2^T -− 1}, {j, 0, 2^T -− 1}], 1], varsc];

Print["For T=", T, " there are ", Dimensions[matrixeq5c][[1]],
" linearly independent constraints"]

Print["For 'instant' causal models"]
varsi = {ap, am, a0, bp0, bp1, b00, b01, b10, b11};
T = 4;
matrixeq4i = equal[

Flatten[Table[pseqi[vec[i, T], vec[j, T], ap, am, a0, bp0, bp1, b00, b01, b10, b11],
{i, 0, 2^T -− 1}, {j, 0, 2^T -− 1}], 1], varsi];

Print["For T=", T, " there are ", Dimensions[matrixeq4i][[1]],
" linearly independent constraints"]

T = 5;
matrixeq5i = equal[

Flatten[Table[pseqi[vec[i, T], vec[j, T], ap, am, a0, bp0, bp1, b00, b01, b10, b11],
{i, 0, 2^T -− 1}, {j, 0, 2^T -− 1}], 1], varsi];

Print["For T=", T, " there are ", Dimensions[matrixeq5i][[1]],
" linearly independent constraints"]

contagion_code_final.nb 5

Equalities satisfied by non-−causal models

For T=4 there are 60 linearly independent constraints

For T=5 there are 540 linearly independent constraints

For causal models

For T=4 there are 28 linearly independent constraints

For T=5 there are 316 linearly independent constraints

For 'instant' causal models

For T=4 there are 24 linearly independent constraints

For T=5 there are 296 linearly independent constraints

Useful equality constraints
Test1 corresponds to c2 in the paper. Test2 corresponds to c1.

(*⋆Using "RevisedSimplex" leads to exact results for the LP, but is slower*⋆)
{γ, bound, test1, lambdas} = LP1[phat2[0.1, 4], 4, 0, "RevisedSimplex"];
test1 = Round[test1, 1 /∕ 24]
{γ, bound, test2, lambdas} = LP1[phat1[0.1, 4], 4, 0];
test2 = Round[test2, 1]

ptest = Flatten[Table[pseq[vec[i, 4], ap, am, a0] pseq[vec[j, 4], bp, bm, b0],
{i, 0, 2^4 -− 1}, {j, 0, 2^4 -− 1}], 1];

(*⋆Verifies equality is satisfied algebraically*⋆)
Print["Check equality test1: ", FullSimplify[test1.ptest]];
Print["Check equality test2: ", FullSimplify[test2.ptest]];
Plot[test1.phat2[δ, 4], {δ, 0, 1}]
Plot[test2.phat1[δ, 4], {δ, 0, 1}]
FullSimplify[test1.phat1[δ, 4]]
FullSimplify[test1.phat2[δ, 4]]
FullSimplify[test2.phat1[δ, 4]]
FullSimplify[test2.phat2[δ, 4]]

{0, 0, 1, 0, -−1, 0, 0, 0, 0, 0, 0, -−1, 0, 1, 0, 0, 0, 0, 1, 0, -−1, 0, 0, 0, 0, 0, 0,
1, 0, -−1, 0, 0, -−1, 1, -−1, -−1, 1, 1, -−1, -−1, 1, 1, -−1, 1, -−1, 1, -−1, -−1, 0, 0,
-−1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, -−1, 0, 0, 1, -−1, 1, 1, -−1, -−1, 1, 1, -−1, -−1, 1,
-−1, 1, -−1, 1, 1, 0, 0, 1, 0, -−1, 0, 0, 0, 0, 0, 0, 1, 0, -−1, 0, 0, 0, 0, 1, 0, -−1,
0, 0, 0, 0, 0, 0, 1, 0, -−1, 0, 0, 0, 0, 1, 0, -−1, 0, 0, 0, 0, 0, 0, 1, 0, -−1, 0, 0,
0, 0, -−1, 0, 1, 0, 0, 0, 0, 0, 0, -−1, 0, 1, 0, 0, 0, 0, -−1, 0, 1, 0, 0, 0, 0, 0, 0,
-−1, 0, 1, 0, 0, 0, 0, -−1, 0, 1, 0, 0, 0, 0, 0, 0, -−1, 0, 1, 0, 0, 1, 1, -−1, 1, 1,
1, -−1, 1, -−1, 1, -−1, 1, 1, 1, -−1, 1, 0, 0, 1, 0, -−1, 0, 0, 0, 0, 0, 0, 1, 0, -−1,
0, 0, -−1, -−1, 1, -−1, -−1, -−1, 1, -−1, 1, -−1, 1, -−1, -−1, -−1, 1, -−1, 0, 0, 1, 0, -−1,
0, 0, 0, 0, 0, 0, -−1, 0, 1, 0, 0, 0, 0, -−1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, -−1, 0, 0}

6 contagion_code_final.nb

{0, 0,
0, 0, 1, 1, -−1, -−1, 0, 0, 0, 0, 1, 1, -−1, -−1, 0, 0, 0, 0, 1, 0, -−1, 0, 0, 0, 0, 0, 0,
1, 0, -−1, 0, 0, 0, 0, -−1, -−1, 1, 1, 0, 0, 0, 0, -−1, -−1, 1, 1, 0, 0, 0, 0, -−1, 0, 1, 0,
0, 0, 0, 0, 0, -−1, 0, 1, 0,
0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -−1, 0, 0, 0, 0, 0, 0, 1, 0,
-−1, 0, 0, 0, 0, 1, 1, -−1, -−1, 0, 0, 0, 0, 1, 1, -−1, -−1, 0, 0, 0, 0, -−1, 0, 1, 0, 0, 0,
0, 0, 0, -−1, 0, 1, 0, 0, 0, 0, -−1, -−1, 1, 1, 0, 0, 0, 0, -−1, -−1, 1, 1, 0, 0, 0, 0, 0,
0, 0}

Check equality test1: 0

Check equality test2: 0

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

1

32
δ -−7 + 3 δ2

7 δ

16

-−
1

8
δ -−3 + δ2

-−
3 δ

16

Analyzing data

contagion_code_final.nb 7

Analyzing data

Results of equality tests for Obesity

test2.norm[obesity]
testbinomial[test2, obesity, 0]
test1.norm[obesity]
testbinomial[test1, obesity, 0]

13

235

0.998231

-−
6

235

0.156967

8 contagion_code_final.nb

How big are errors from empirical distribution estimation?

(*⋆Draw empirical distributions from a completely mixed distribution*⋆)
Needs["ErrorBarPlots`"]
random[M_] := BinCounts[RandomInteger[255, M], {0, 256, 1}]
stats[M_, x_] := {{M, Mean[x]}, ErrorBar[StandardDeviation[x]]}
ms = Table[k, {k, 0, 10}];
test = Table[Join[stats[k,

Table[Norm[norm[random[500 *⋆ 2^k]] -− Table[1 /∕ 256, {256}]], {i, 10}]]], {k, ms}];

ErrorListPlottest, Joined → True, Frame → True,
FrameTicks → {{Automatic, Automatic}, {ms, None}},
FrameLabel → Style"k (M = 500⨯2k samples)", 12, FontFamily → "Arial",

Style["Euclidean Distance", 12, FontFamily → "Arial"]

ShowPlot1 500 × 2^k , {k, 0, 10}, %

0 1 2 3 4 5 6 7 8 9 10
0.00

0.01

0.02

0.03

0.04

k (M = 500⨯2k samples)

E
uc

lid
ea

n
D

is
ta

nc
e

2 4 6 8 10

0.01

0.02

0.03

0.04

contagion_code_final.nb 9

plot2 = Graphics[{FontSize → 14,
FontFamily → "Helvetica", Text["γcopy/∕|ccopy|", {445 000, 0.009}]}];

plot3 = Graphics[{FontSize → 14, FontFamily → "Helvetica",
Text["γLH/∕|cLH|", {400 000, 0.0009}]}];

plot4 = Graphics[{FontSize → 14, FontFamily → "Helvetica",
Text["euc(M)", {180 000, 0.0035}]}];

plot6 = Plot1 M , {M, 0, 600 000}, PlotRange → {{0, 600 000}, {0, 0.01}},

Frame → True, FrameLabel → {Style["M samples", 12, FontFamily → "Arial"],
Style["Euclidean Distance", 12, FontFamily → "Arial"]}

plot5 = Show[plot6, ListPlot[{{{400 000, 0.00022}}, {{400 000, 0.0095}}},
PlotMarkers → Automatic], plot2, plot3]

0 100000 200000 300000 400000 500000 600000
0.000

0.002

0.004

0.006

0.008

0.010

M samples

E
uc

lid
ea

n
D

is
ta

nc
e

●●

■■γ𝛾copy/∕|ccopy|

γ𝛾LH/∕|cLH|
0 100000 200000 300000 400000 500000 600000

0.000

0.002

0.004

0.006

0.008

0.010

M samples

E
uc

lid
ea

n
D

is
ta

nc
e

Export["deviation.pdf", plot5]

deviation.pdf

10 contagion_code_final.nb

Check max violation for FHS data with T=4,maxd=8

(*⋆For each attribute, link,
calc the violation. Then check confidence that the violation is greater than...

for no link*⋆)
{γ, bound, c, lambdas} = LP1[norm[obesity], 4, 8];
Print["γ=", γ, " γ/∕|c|=", γ /∕ Norm[c], " using M=", Total[obesity]]

γ=0.210877 γ/∕|c|=0.0174146 using M=705

Analyze ST Data with both types of test

{γ, bound, c, lambdas} = LP1[norm[stinfluence], 4, 9];
Print["γ=", γ, " γ/∕|c|=", γ /∕ Norm[c], " using M=", Total[stinfluence]]

γ=0.115694 γ/∕|c|=0.00956559 using M=400 000

{γ, bound, c, lambdas} = LP1[norm[sthomophily], 4, 9];
Print["γ=", γ, " γ/∕|c|=", γ /∕ Norm[c], " using M=", Total[sthomophily]]

Could not find a bound

{γ, bound, c, lambdas} = LP1[norm[sthomophily], 4, 0];
Print["γ=", γ, " γ/∕|c|=", γ /∕ Norm[c], " using M=", Total[sthomophily]]

γ=0.0023775 γ/∕|c|=0.000226686 using M=400 000

{γ, bound, c, lambdas} = LP1[norm[sthomophily], 4, 8, "RevisedSimplex"];
Print["γ=", γ, " γ/∕|c|=", γ /∕ Norm[c], " using M=", Total[sthomophily]]

$Aborted

γ=0.0023775 γ/∕|c|=0.000226686 using M=400 000

Print["Influence, copying model in ST"]
test1.norm[stinfluence] (*⋆deviation*⋆)
test1.stinfluence (*⋆heads+tails*⋆)
Abs[test1].stinfluence (*⋆heads -− tails*⋆)
testbinomial[test1, stinfluence, 0] (*⋆confidence using binomial dist*⋆)

test2.norm[stinfluence]
test2.stinfluence
Abs[test2].stinfluence
1 -− testbinomial[test2, stinfluence, 0]

Print["Latent homophily model in ST"]
test1.norm[sthomophily]
test1.sthomophily
Abs[test1].sthomophily
testbinomial[test1, sthomophily, 0]

test2.norm[sthomophily]
test2.sthomophily
Abs[test2].sthomophily
testbinomial[test2, sthomophily, 0]

contagion_code_final.nb 11

Influence, copying model in ST

-−
387

50 000

-−3096

121 044

0.

12 431

200 000

24 862

44 726

1.633876631902287 × 10-−3181

Latent homophily model in ST

27

80 000

135

39 877

0.7489

3

200 000

6

2992

0.536415

12 contagion_code_final.nb

B Code for Correlation Explanation (CorEx)

This code resulted from [5] and is maintained at http://www.github.com/gregversteeg/
corex.

"""Correlation Explanation

Greg Ver Steeg and Aram Galstyan. "Discovering Structure in

High-Dimensional Data Through Correlation Explanation."

NIPS, 2014. arXiv preprint arXiv:1406.1222.

Code below written by:

Greg Ver Steeg (gregv@isi.edu)

and Gabriel Pereyra

License: GPL2

"""

import numpy as np # Tested with 1.8.0

from scipy.misc import logsumexp # Tested with 0.13.0

class Corex(object):

"""

Correlation Explanation

A method to learn a hierarchy of successively more abstract

representations of complex data that are maximally

informative about the data. This method is unsupervised,

requires no assumptions about the data-generating model,

and scales linearly with the number of variables.

Greg Ver Steeg and Aram Galstyan. "Discovering Structure in

High-Dimensional Data Through Correlation Explanation."

NIPS, 2014. arXiv preprint arXiv:1406.1222.

Code follows sklearn naming/style (e.g. fit(X) to train)

Parameters

n_hidden : int, optional, default=2

Number of hidden units.

dim_hidden : int, optional, default=2

Each hidden unit can take dim_hidden discrete values.

alpha_hyper : tuple, optional

20

A tuple of three numbers representing hyper-parameters

of the algorithm. See NIPS paper for meaning.

Not extensively tested, but problem-specific tuning

does not seem necessary.

max_iter : int, optional

Maximum number of iterations before ending.

batch_size : int, optional

Number of examples per minibatch. NOT IMPLEMENTED IN THIS VERSION.

n_repeat : int, optional

Repeat several times and take solution with highest TC.

NOT IMPLEMENTED IN THIS VERSION. (But a good thing to do.)

verbose : int, optional

The verbosity level. The default, zero, means silent mode. 1 outputs TC(X;

Y) as you go

2 output alpha matrix and MIs as you go.

seed : integer or numpy.RandomState, optional

A random number generator instance to define the state of the

random permutations generator. If an integer is given, it fixes the

seed. Defaults to the global numpy random number generator.

Attributes

labels : array, [n_hidden, n_samples]

Label for each hidden unit for each sample.

clusters : array, [n_variables]

Cluster label for each input variable.

p_y_given_x : array, [n_hidden, n_samples, dim_hidden]

The distribution of latent factors for each sample.

alpha : array-like, shape (n_components,)

Adjacency matrix between input variables and hidden units. In range [0,1].

mis : array, [n_hidden, n_variables]

Mutual information between each variable and hidden unit

tcs : array, [n_hidden]

TC(X_Gj;Y_j) for each hidden unit

tc : float

21

Convenience variable = Sum_j tcs[j]

tc_history : array

Shows value of TC over the course of learning. Hopefully, it is converging

.

References

[1] Greg Ver Steeg and Aram Galstyan. "Discovering Structure in

High-Dimensional Data Through Correlation Explanation."

NIPS, 2014. arXiv preprint arXiv:1406.1222.

"""

def __init__(self, n_hidden=2, dim_hidden=2, # Size of representations

batch_size=1e6, max_iter=400, n_repeat=1, # Computational limits

eps=1e-6, alpha_hyper=(0.3, 1., 500.), balance=0., # Parameters

missing_values=-1, seed=None, verbose=False):

self.dim_hidden = dim_hidden # Each hidden factor can take dim_hidden

discrete values

self.n_hidden = n_hidden # Number of hidden factors to use (Y_1,...Y_m) in

paper

self.missing_values = missing_values # Implies the value for this variable

for this sample is unknown

self.max_iter = max_iter # Maximum number of updates to run, regardless of

convergence

self.batch_size = batch_size # TODO: re-implement running with mini-

batches

self.n_repeat = n_repeat # TODO: Run multiple times and take solution with

largest TC

self.eps = eps # Change in TC to signal convergence

self.lam, self.tmin, self.ttc = alpha_hyper # Hyper-parameters for

updating alpha

self.balance = balance # 0 implies no balance constraint. Values between 0

and 1 are valid.

np.random.seed(seed) # Set for deterministic results

self.verbose = verbose

if verbose > 0:

22

np.set_printoptions(precision=3, suppress=True, linewidth=200)

print ’corex, rep size:’, n_hidden, dim_hidden

if verbose > 1:

np.seterr(all=’warn’)

else:

np.seterr(all=’ignore’)

def label(self, p_y_given_x):

"""Maximum likelihood labels for some distribution over y’s"""

return np.argmax(p_y_given_x, axis=2).T

@property

def labels(self):

"""Maximum likelihood labels for training data. Can access with self.

labels (no parens needed)"""

return self.label(self.p_y_given_x)

@property

def clusters(self):

"""Return cluster labels for variables"""

return np.argmax(self.alpha[:,:,0],axis=0)

@property

def tc(self):

"""The total correlation explained by all the Y’s.

(Currently correct only for trees, modify for non-trees later.)"""

return np.sum(self.tcs)

def event_from_sample(self, x):

"""Transform data into event format.

For each variable, for each possible value of dim_visible it could take (

an event),

we return a boolean matrix of True/False if this event occurred in this

sample, x.

Parameters:

x: {array-like}, shape = [n_visible]

Returns:

x_event: {array-like}, shape = [n_visible * self.dim_visible]

"""

x = np.asarray(x)

n_visible = x.shape[0]

assert self.n_visible == n_visible, \

"Incorrect dimensionality for samples to transform."

return np.ravel(x[:, np.newaxis] == np.tile(np.arange(self.dim_visible), (

n_visible, 1)))

23

def events_from_samples(self, X):

"""Transform data into event format. See event_from_sample docstring."""

n_samples, n_visible = X.shape

events_to_transform = np.empty((self.n_events, n_samples), dtype=bool)

for l, x in enumerate(X):

events_to_transform[:, l] = self.event_from_sample(x)

return events_to_transform

def transform(self, X, details=False):

"""

Label hidden factors for (possibly previously unseen) samples of data.

Parameters: samples of data, X, shape = [n_samples, n_visible]

Returns: , shape = [n_samples, n_hidden]

"""

if X.ndim < 2:

X = X[np.newaxis, :]

events_to_transform = self.events_from_samples(X)

p_y_given_x, log_z = self.calculate_latent(events_to_transform)

if details:

return p_y_given_x, log_z

else:

return self.label(p_y_given_x)

def fit(self, X, **params):

"""Fit CorEx on the data X.

Parameters

X: {array-like, sparse matrix}, shape = [n_samples, n_visible]

Data matrix to be

Returns

self

"""

self.fit_transform(X)

return self

def fit_transform(self, X):

"""Fit corex on the data (this used to be ucorex)

Parameters

X : array-like, shape = [n_samples, n_visible]

The data.

24

Returns

Y: array-like, shape = [n_samples, n_hidden]

Learned values for each latent factor for each sample.

Y’s are sorted so that Y_1 explains most correlation, etc.

"""

self.initialize_parameters(X)

X_event = self.events_from_samples(X) # Work with transformed

representation of data for efficiency

self.p_x, self.entropy_x = self.data_statistics(X_event)

for nloop in range(self.max_iter):

self.update_marginals(X_event, self.p_y_given_x) # Eq. 8

if self.n_hidden > 1: # Structure learning step

self.mis = self.calculate_mis(self.log_p_y, self.log_marg)

self.update_alpha(self.mis, self.tcs) # Eq. 9

self.p_y_given_x, self.log_z = self.calculate_latent(X_event) # Eq. 7

self.update_tc(self.log_z) # Calculate TC and record history for

convergence

self.print_verbose()

if self.convergence(): break

self.sort_and_output()

return self.labels

def initialize_parameters(self, X):

"""Set up starting state

Parameters

X : array-like, shape = [n_samples, n_visible]

The data.

"""

25

self.n_samples, self.n_visible = X.shape

self.initialize_events(X)

self.initialize_representation()

def initialize_events(self, X):

values_in_data = set(np.unique(X).tolist())-set([self.missing_values])

self.dim_visible = int(max(values_in_data)) + 1

if not set(range(self.dim_visible)) == values_in_data:

print "Warning: Data matrix values should be consecutive integers

starting with 0,1,..."

self.n_events = self.n_visible * self.dim_visible

def initialize_representation(self):

if self.n_hidden > 1:

self.alpha = (0.5+0.5*np.random.random((self.n_hidden, self.n_visible,

1)))

else:

self.alpha = np.ones((self.n_hidden, self.n_visible, 1), dtype=float)

self.tc_history = []

self.tcs = np.zeros(self.n_hidden)

log_p_y_given_x_unnorm = -np.log(self.dim_hidden) * (0.5 + np.random.

random((self.n_hidden, self.n_samples, self.dim_hidden)))

#log_p_y_given_x_unnorm = -100.*np.random.randint(0,2,(self.n_hidden, self

.n_samples, self.dim_hidden))

self.p_y_given_x, self.log_z = self.normalize_latent(

log_p_y_given_x_unnorm)

def data_statistics(self, X_event):

p_x = np.sum(X_event, axis=1).astype(float)

p_x = p_x.reshape((self.n_visible, self.dim_visible))

p_x /= np.sum(p_x, axis=1, keepdims=True) # With missing values, each x_i

may not appear n_samples times

entropy_x = np.sum(np.where(p_x>0., -p_x * np.log(p_x), 0), axis=1)

entropy_x = np.where(entropy_x > 0, entropy_x, 1e-10)

return p_x, entropy_x

def update_marginals(self, X_event, p_y_given_x):

self.log_p_y = self.calculate_p_y(p_y_given_x)

self.log_marg = self.calculate_p_y_xi(X_event, p_y_given_x) - self.log_p_y

def calculate_p_y(self, p_y_given_x):

"""Estimate log p(y_j) using a tiny bit of Laplace smoothing to avoid

infinities."""

pseudo_counts = 0.001 + np.sum(p_y_given_x, axis=1, keepdims=True)

26

log_p_y = np.log(pseudo_counts) - np.log(np.sum(pseudo_counts, axis=2,

keepdims=True))

return log_p_y

def calculate_p_y_xi(self, X_event, p_y_given_x):

"""Estimate log p(y_j|x_i) using a tiny bit of Laplace smoothing to avoid

infinities."""

pseudo_counts = 0.001 + np.dot(X_event, p_y_given_x).transpose((1,0,2)) #

n_hidden, n_events, dim_hidden

log_marg = np.log(pseudo_counts) - np.log(np.sum(pseudo_counts, axis=2,

keepdims=True))

return log_marg # May be better to calc log p(x_i|y_j)/p(x_i), as we do in

Marg_Corex

def calculate_mis(self, log_p_y, log_marg):

"""Return normalized mutual information"""

vec = np.exp(log_marg + log_p_y) # p(y_j|x_i)

smis = np.sum(vec * log_marg, axis=2)

smis = smis.reshape((self.n_hidden, self.n_visible, self.dim_visible))

mis = np.sum(smis * self.p_x, axis=2, keepdims=True)

return mis/self.entropy_x.reshape((1, -1, 1))

def update_alpha(self, mis, tcs):

t = (self.tmin + self.ttc * np.abs(tcs)).reshape((self.n_hidden, 1, 1))

maxmis = np.max(mis, axis=0)

alphaopt = np.exp(t * (mis - maxmis))

self.alpha = (1. - self.lam) * self.alpha + self.lam * alphaopt

def calculate_latent(self, X_event):

""""Calculate the probability distribution for hidden factors for each

sample."""

alpha_rep = np.repeat(self.alpha, self.dim_visible, axis=1)

log_p_y_given_x_unnorm = (1. - self.balance) * self.log_p_y + np.transpose

(np.dot(X_event.T, alpha_rep*self.log_marg), (1, 0, 2))

return self.normalize_latent(log_p_y_given_x_unnorm)

def normalize_latent(self, log_p_y_given_x_unnorm):

"""Normalize the latent variable distribution

For each sample in the training set, we estimate a probability

distribution

over y_j, each hidden factor. Here we normalize it. (Eq. 7 in paper.)

This normalization factor is quite useful as described in upcoming work.

Parameters

27

Unnormalized distribution of hidden factors for each training sample.

Returns

p_y_given_x : 3D array, shape (n_hidden, n_samples, dim_hidden)

p(y_j|x^l), the probability distribution over all hidden factors,

for data samples l = 1...n_samples

log_z : 2D array, shape (n_hidden, n_samples)

Point-wise estimate of total correlation explained by each Y_j for each

sample,

used to estimate overall total correlation.

"""

log_z = logsumexp(log_p_y_given_x_unnorm, axis=2) # Essential to maintain

precision.

log_z = log_z.reshape((self.n_hidden, -1, 1))

return np.exp(log_p_y_given_x_unnorm - log_z), log_z

def update_tc(self, log_z):

self.tcs = np.mean(log_z, axis=1).reshape(-1)

self.tc_history.append(np.sum(self.tcs))

def sort_and_output(self):

order = np.argsort(self.tcs)[::-1] # Order components from strongest TC to

weakest

self.tcs = self.tcs[order] # TC for each component

self.alpha = self.alpha[order] # Connections between X_i and Y_j

self.p_y_given_x = self.p_y_given_x[order] # Probabilistic labels for each

sample

self.log_marg = self.log_marg[order] # Parameters defining the

representation

self.log_p_y = self.log_p_y[order] # Parameters defining the

representation

self.log_z = self.log_z[order] # -log_z can be interpreted as "surprise"

for each sample

if hasattr(self, ’mis’):

self.mis = self.mis[order]

def print_verbose(self):

if self.verbose:

print self.tcs

if self.verbose > 1:

print self.alpha[:,:,0]

28

if hasattr(self, "mis"):

print self.mis[:,:,0]

def convergence(self):

dist = -np.mean(self.tc_history[-10:-5]) + np.mean(self.tc_history[-5:])

return np.abs(dist) < self.eps # Check for convergence. dist is nan for

empty arrays, but that’s OK

29

Response ID:5335 Data

1.

1. Report Type

Final Report

Primary Contact E-mail
Contact email if there is a problem with the report.

gregv@isi.edu

Primary Contact Phone Number
Contact phone number if there is a problem with the report

626-840-5901

Organization / Institution name

Information Sciences Institute, USC

Grant/Contract Title
The full title of the funded effort.

Bell Inequalities for Complex Networks

Grant/Contract Number
AFOSR assigned control number. It must begin with "FA9550" or "F49620" or "FA2386".

FA9550-12-1-0417

Principal Investigator Name
The full name of the principal investigator on the grant or contract.

Greg Ver Steeg

Program Manager
The AFOSR Program Manager currently assigned to the award

James Lawton

Reporting Period Start Date

08/01/2012

Reporting Period End Date

07/31/2015

Abstract

This effort studied new methods to understand the effect of hidden variables af- fecting complex systems.
Bell inequalities are a famous example of a hidden variable test in quantum physics that provides the
strongest evidence for that theory. Initial work in this project extended the mathematical formulations of Bell
inequalities to design new hidden variable tests that were able to account for confounding effects in
complex systems including human social networks. These tests solved an open ques- tion about the
identifiability of contagion in social network studies. Subsequent work moved beyond identification of
hidden variables to develop a new information-theoretic framework capable of reconstructing hidden
variables explaining the multivariate de- pendencies in complex systems. These methods have
demonstrated value on diverse problems including human behavior, language, neuroscience, and gene
expression.

Distribution Statement
This is block 12 on the SF298 form.

Distribution A - Approved for Public Release

Explanation for Distribution Statement
If this is not approved for public release, please provide a short explanation. E.g., contains proprietary information.

SF298 Form
Please attach your SF298 form. A blank SF298 can be found here. Please do not password protect or secure the PDF

The maximum file size for an SF298 is 50MB.

sf298_versteeg.pdf

Upload the Report Document. File must be a PDF. Please do not password protect or secure the PDF . The
maximum file size for the Report Document is 50MB.

afosr_versteeg.pdf

Upload a Report Document, if any. The maximum file size for the Report Document is 50MB.

Archival Publications (published) during reporting period:

• Greg Ver Steeg and Aram Galstyan. Statistical tests for contagion in observational social network studies.
In Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics (AISTATS),
2013.
• Greg Ver Steeg and Aram Galstyan. Discovering structure in high-dimensional data through correlation
explanation. In Advances in Neural Information Processing Sys- tems (NIPS), 2014.
• Greg Ver Steeg and Aram Galstyan. Maximally informative hierarchical representa- tions of high-
dimensional data. In Proceedings of the Sixteenth International Con- ference on Artificial Intelligence and
Statistics (AISTATS), 2015.
• Greg Ver Steeg and Aram Galstyan. The Information Sieve. arXiv:1507.02284, 2015.

Changes in research objectives (if any):

The original goal of the project was to develop tests for the existence of hidden variables affecting complex
systems. This evolved in year two to encompass a new approach to reconstructing these hidden factors
based on information-theoretic principles.

Change in AFOSR Program Manager, if any:

Original PM was Robert Bonneau. James Lawton is still temporarily administering the complex networks
program as far as I know.

Extensions granted or milestones slipped, if any:

AFOSR LRIR Number

LRIR Title

Reporting Period

Laboratory Task Manager

Program Officer

Research Objectives

Technical Summary

Funding Summary by Cost Category (by FY, $K)

 Starting FY FY+1 FY+2

Salary

Equipment/Facilities

Supplies

Total

Report Document

Report Document - Text Analysis

Report Document - Text Analysis

Appendix Documents

http://www.wpafb.af.mil/shared/media/document/AFD-070820-035.pdf
http://www.wpafb.af.mil/shared/media/document/AFD-070820-035.pdf
http://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/11364/363557/184-86378dffd1d9161b8945888758d945cd_sf298_versteeg.pdf
http://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/11364/363557/44-49d0fafd15ee66e144815b427f9b2503_afosr_versteeg.pdf

2. Thank You

E-mail user

Oct 23, 2015 14:23:32 Success: Email Sent to: gregv@isi.edu

	DTIC_Title_Page_-_YIP_Bell_Inequalities_for_Complex_Networks[1]
	FA9550-12-1-0417_SF298[1]
	FA9550-12-1-0417_FINAL_REPORT[1]
	FA9550-12-1-0417_SURV[1]

	rpt_date: 20-10-2015
	rpt_type: Final Performance Report
	dates_cov: 01/08/2012 - 31/07/2015
	title:
Bell Inequalities for Complex Networks
	ctr_no:
	grant_no: FA9550-12-1-0417
	prog_elem:
	proj_no:
	task_no:
	work_unit:
	authors:
Ver Steeg, Greg L.
	perf_org:
Information Sciences Institute
University of Southern California,
4676 Admiralty Way, Ste 1001
Marina del Rey, CA 90292
	perf_rptno:
	spons_agcy:
Air Force Office of Special Research
875 North Randolph Street, Suite 325
Arlington, VA 22203
	acronyms: AFOSR
	spons_rptno: FA9550-12-1-0417
	dist_stmt: DISTRIBUTION A
	supp_notes:
	abstract:
This effort studied new methods to understand the effect of hidden variables affecting complex systems. Bell inequalities are a famous example of a hidden variable test in quantum physics that provides the strongest evidence for that theory. Initial work in this project extended the mathematical formulations of Bell inequalities to design new hidden variable tests that were able to account for confounding effects in complex systems including human social networks. These tests solved an open question about the identifiability of contagion in social network studies. Subsequent work moved beyond identification of hidden variables to develop a new information-theoretic framework capable of reconstructing hidden variables explaining the multivariate dependencies in complex systems. These methods have demonstrated value on diverse problems including human behavior, language, neuroscience, and gene expression.
	subj_terms: information theory, networks, complex systems, bell inequalities, algebraic geometry
	rpt_class: U
	abstr_class: U
	page_class: U
	limit: UU
	pages: 30
	name_resp: Greg Ver Steeg
	phone_resp: 626-840-5901
	Reset:

